
Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 8: Extending LibreOffice

Chapter 48. Event Macros

Event macros are functions triggered by the occurrence of

events, either within Office or in Office documents. I'll be

using event macros with forms, by attaching them to controls

such as buttons and textfields.

A key difference between event macros and Java listeners is

that macros are attached to Office or to documents rather

than being part of an external Java program. In practical

terms this means that the macro code becomes part of the

Office installation or is embedded inside a document's ODF file.

I'll spend two chapters discussing event macros: this chapter focuses on how to use

existing Office macros, and how to write a simple event macro that's installed by

copying it to a specific Office directory. This approach is obviously not ideal, and so

the next chapter looks at installing macros as extensions, and by attaching them to

documents.

The Developer's Guide discusses macros in chapter 18, "Scripting Framework", but

macro programming has changed since the guide was produced (e.g. macros can now

be written in Python), so it's better to read the more current OpenOffice wiki, starting

at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Frame

work (or use loGuide "Scripting Framework").

Most macro programming resources employ Office Basic, and Java rarely gets

mentioned, as in chapter 13, "Getting Started with Macros", of the "Getting Started

Guide" (available at http://www.libreoffice.org/get-help/documentation/). That

chapter ends with a useful list of online resources, and printed and eBook materials.

Probably the best source for Office Basic macro coding is Andrew Pitonyak's website

at http://www.pitonyak.org/oo.php; I recommend starting with his book,

"OpenOffice.org Macros Explained" (OOME), which is free to download. There's

also a separate book of collected macros, called AndrewMacros.pdf.

Another excellent introduction to Office Basic Macros (written in French) is:

 Programmation OpenOffice.org et LibreOffice: Macros OOoBasic et API

Bernard Marcelly and Laurent Godard

Eyrolles, 2011

http://www.editions-eyrolles.com/Livre/9782212132472/programmation-

openoffice-org-et-libreoffice

Two textbooks that focus on Office Basic macros in a particular Office application:

 Learn OpenOffice.org Spreadsheet Macro Programming: OOoBasic and Calc

Automation

Mark Alexander Bain

Packt Publishing, 2006

Topics:Macro Locations;

Naming Macro

Functions; Calling

Existing Macros; The

LibreLogo Macro;

Writing a Simple Event

Macro; Automating the

Assigning of Event

Macros

Example folders:

"EvMacro Tests" and

"Utils"

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

https://www.packtpub.com/hardware-and-creative/learn-openofficeorg-

spreadsheet-macro-programming-ooobasic-and-calc-automation

 Database Programming with OpenOffice.org Base and Basic

Roberto Benitez

Lulu.com, 2011

http://www.lulu.com/shop/roberto-benitez/database-programming-with-

openofficeorg-base-basic/paperback/product-3568728.html

1. Fantastic Macros and Where to Find Them

There are four categories of macros:

 user: user macros are available only to the user who added them to Office;

 share: share macros can be called by all users of that copy of Office;

 extension: extension macros are added to office as an extension, and may be

available only to the user or be shared (these are discussed in the next chapter);

 document: these macros are added to a document rather than to Office, and so are

useable only in that document (see the next chapter).

These categories are reflected in how the Office GUI displays installed macros in the

Macro Selector dialog of Figure 1 (accessible via the Tools > Macros > "Run Macros"

menu item).

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

Figure 1. The "Tools > Macros > Run Macros" Dialog.

The top-level folders in Figure 1 are library containers: "My Macros" and

"LibreOffice Macros" are always present, and store user and share macros

respectively. If the currently loaded document contains document macros then there

will be a third container with the same name as the file (e.g. "build.odt" in Figure 1).

Extension macros are grouped under the name of the extension file (e.g.

"FormMacros.oxt"), and may occur in either "My Macros" or "LibreOffice Macros"

depending on if the extension contains user or share macros.

Each library container (e.g. "My Macros") can hold multiple libraries; each library

can contain multiple modules; each module can store multiple macros. For example,

Figure 1 shows that the "My Macros" container holds three libraries called

"FormMacros.oxt", "Standard", and "WikiEditor". The "FormMacros.oxt" library

(which holds extension macros) consists of a single "Utils" module with two macros

called "GetNumber.get" and "GetText.show". I'll be explaining how to create and

install this extension in the next chapter.

In addition, the Tools > Macros > "Organize Macros" menu gives access to macros

according to some of the programming languages supported by Office, but Java isn't

included (see Figure 2). As a consequence, I'll use the Macro Selector dialog of

Figure 1 from now on.

Figure 2. The Tools > Macros > "Organize Macros" Menu.

2. Where are Macros Stored?

Aside from accessing macros through the Office GUI, it's useful to know where

they're located in the directory structure. This is especially true for user and share

macros since the easiest way to install them is to copy them into Office's designated

folders. However, extension macros are installed using the extension manager, and

document macros are added to their document using unzipping and zipping.

Finding Office's macro folders can be a bit tricky, since their location varies

depending on if the macros are user or share, coded in Office Basic or another

language, and on the version of Office and OS.

The folders for share macros are probably the easiest to find – they're located inside

<OFFICE>\share\ (e.g. C:\Program Files\LibreOffice 5\share\ on my machine). Basic

macros are in share\basic\ while macros in other languages, such as Java, are in

subfolders of share\Scripts\ (e.g. see Figure 3).

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

Figure 3. The Non-Basic share\Scripts\ Macros Folders.

In other words, Java share macros will be in:

C:\Program Files\LibreOffice 5\share\Scripts\java

User macros are stored in an 'application data' subfolder for LibreOffice. On

Windows, application data starts at the location stored in the APPDATA environment

variable, which you can print out:

echo %APPDATA%

On my work test machine this prints "C:\Users\Ad\AppData\Roaming". You need to

locate the LibreOffice subdirectory in the Roaming\ folder and then its user\

subdirectory, which will be inside LibreOffice\5\ or perhaps LibreOffice\4\. For

instance, on one of my test machines the user\ folder is:

C:\Users\Ad\AppData\Roaming\LibreOffice\4\user

If you haven't previously downloaded or created Java user macros, then you'll have to

create a Scripts\ folder inside user\, and a java\ folder inside Scripts\. In other words,

the Java user macros will be in:

C:\Users\Ad\AppData\Roaming\LibreOffice\4\user\Scripts\java

3. Naming Macro Functions

The "Macro Selector dialog displays a list of macros in its right hand window (e.g.

"GetNumber.get" and "GetText.show" in Figure 1), but more detailed function names

are required when calling macros from code.

A function name is specified as a URI of the form:

vnd.sun.star.script:MACROPARAM?language=LANGPARAM

 &location=LOCPARAM

LANGPARAM identifies the macro's programming language, which may be "Basic",

"BeanShell", "Java", "JavaScript", or "Python".

LOCPARAM is the macro category, which for Java macros can be "user", "share", or

"document". Extension macros use the label "user:uno_packages/" or

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

"share:uno_packages/" followed by the name of the extension file (e.g.

"user:uno_packages/FormMacros.oxt").

MACROPARAM takes the form:

FOLDER.[PACKAGE_NAME.]CLASS_NAME.FUNCTION_NAME

FOLDER is the subdirectory holding the compiled Java code in the user or share java\

folder, and the package name is optional. The class and function names are displayed

by the Macro Selector dialog (see Figure 1). For example, "GetNumber.get" refers to

the static function get() in the GetNumber class.

Information about the URI formats for other languages is given on the "Scripting

Framework URI Specification" page at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Frame

work_URI_Specification (or use loGuide "Scripting Framework URI

Specification").

Listing and Finding Macro Names

Knowing a macro's full name is essential, so I've added some helper functions to the

Macros.java utilities class. The ListMacros.java and FindMacros.java examples show

how to use them.

ListMacros.java calls Macros.getLangScripts() to print the names of the macros

written in a given language:

// in ListMacros.java

public static void main(String[] args)

{

 String lang = "Java";

 if (args.length != 1) {

 System.out.println("Usage: run ListMacros [Java | Python |

 BeanShell | Basic | JavaScript]");

 System.out.println("Using \"Java\"");

 }

 else

 lang = args[0];

 XComponentLoader loader = Lo.loadOffice();

 ArrayList<String> scriptURIs = Macros.getLangScripts(lang);

 System.out.println(lang + " Macros in Office: (" +

 scriptURIs.size() + ")");

 for(String scriptURI : scriptURIs)

 System.out.println(" " + scriptURI);

 Lo.closeOffice();

} // end of main()

Macros.getLangScripts() obtains a list of all the macro names by calling

Macros.getScripts(), then filters out names based on a "language=LANGPARAM&"

substring:

// in the Macros class

public static ArrayList<String> getLangScripts(String lang)

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

{

 if (!isMacroLanguage(lang)) {

 System.out.println("Not a Macro language; try \"Java\"");

 return null;

 }

 ArrayList<String> fScripts = new ArrayList<>();

 ArrayList<String> scriptURIs = getScripts();

 for(String scriptURI : scriptURIs)

 if (scriptURI.contains("language=" + lang + "&"))

 fScripts.add(scriptURI);

 return fScripts;

} // end of getLangScripts()

Macros.getScripts() utilizes services and interfaces in the com.sun.star.script.browse

module to examine a scripts tree structure consisting of CONTAINER and SCRIPT

nodes – the CONTAINER nodes are the internal branches of the tree representing

libraries and modules, while SCRIPT nodes are the leaves holding macro information.

Macros.getScripts() accesses the root of the MACROORGANIZER tree, and collects

script names by having getLibScripts() recursively traverse the tree, adding names to

a scripts ArrayList:

// in the Macros class

public static ArrayList<String> getScripts()

{

 ArrayList<String> scripts = new ArrayList<>();

 XComponentContext xcc = Lo.getContext();

 XBrowseNodeFactory bnf = Lo.qi(XBrowseNodeFactory.class,

 xcc.getValueByName(

 "/singletons/com.sun.star.script.

 browse.theBrowseNodeFactory"));

 XBrowseNode rootNode = Lo.qi(XBrowseNode.class,

 bnf.createView(BrowseNodeFactoryViewTypes.MACROORGANIZER));

 // for scripts

 XBrowseNode[] typeNodes = rootNode.getChildNodes();

 for(int i=0; i < typeNodes.length; i++) {

 XBrowseNode typeNode = typeNodes[i];

 XBrowseNode[] libraryNodes = typeNode.getChildNodes();

 for(int j=0; j < libraryNodes.length; j++)

 getLibScripts(libraryNodes[j], 0,

 typeNode.getName(), scripts);

 }

 System.out.println();

 return scripts;

} // end of getScripts()

public static void getLibScripts(XBrowseNode browseNode, int level,

 String path, ArrayList<String> scripts)

{

 XBrowseNode[] scriptNodes = browseNode.getChildNodes();

 if ((scriptNodes.length == 0) && (level > 1))

 // not a top-level library

 System.out.println("No scripts in " + path);

 for(int i=0; i < scriptNodes.length; i++) {

 XBrowseNode scriptNode = scriptNodes[i];

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

 if (scriptNode.getType() == BrowseNodeTypes.SCRIPT) {

 XPropertySet props = Lo.qi(XPropertySet.class, scriptNode);

 if (props != null) {

 try {

 scripts.add((String)props.getPropertyValue("URI"));

 }

 catch(com.sun.star.uno.Exception e)

 { System.out.println(e); }

 }

 else

 System.out.println("No props for " + scriptNode.getName());

 }

 else if (scriptNode.getType() == BrowseNodeTypes.CONTAINER)

 getLibScripts(scriptNode, level+1, path + ">" +

 scriptNode.getName(), scripts);

 else

 System.out.println("Unknown node type");

 }

} // end of getLibScripts()

All the Java macros can be listed by calling:

run ListMacros Java

It will print something like:

Java Macros in Office: (6)

vnd.sun.star.script:Utils.GetNumber.get?language=Java&

 location=user:uno_packages/FormMacros.oxt

vnd.sun.star.script:Utils.GetText.show?language=Java&

 location=user:uno_packages/FormMacros.oxt

vnd.sun.star.script:HelloWorld.org.libreoffice.example.java_scripts.

 HelloWorld.printHW?language=Java&location=share

vnd.sun.star.script:Highlight.org.libreoffice.example.java_scripts.

 HighlightText.showForm?language=Java&location=share

vnd.sun.star.script:MemoryUsage.org.libreoffice.example.java_scripts.

 MemoryUsage.updateMemoryUsage?language=Java&location=share

vnd.sun.star.script:ShowEvent.ShowEvent.show?language=Java&

 location=share

Six Java macros were found: two are user macros from the FormMacros.oxt

extension, and four are share macros. The first three share macros

(HelloWorld.printHW, HighlightText.showForm, and

MemoryUsage.updateMemoryUsage) are LibreOffice examples; I'll explain the first

one:

vnd.sun.star.script:HelloWorld.org.libreoffice.example.java_scripts.

 HelloWorld.printHW?language=Java&location=share

The macro's location parameter is "location=share", which means that it appears in the

"LibreOffice Macros" section of the Macro Selector dialog in Figure 4.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

Figure 4. The HelloWorld.printHW Macro.

The four components of

"HelloWorld.org.libreoffice.example.java_scripts.HelloWorld.printHW" are:

 folder: HelloWorld

 package: org.libreoffice.example.java_scripts

 class name: HelloWorld

 function name: printHW

The HelloWorld\ folder is inside C:\Program Files\LibreOffice 5\share\Scripts\java\,

as confirmed by Figure 5.

Figure 5. The HelloWorld Folder in share\Scripts\java.

Figure 5 also shows Highlight\, MemoryUsage\ and ShowEvent\ folders which hold

the other three share macros listed by ListMacros.java.

The HelloWorld\ folder contains the compiled HelloWorld class in a JAR file, and a

parcel-descriptor.xml configuration file, which I'll explain later. It also has the source

code for HelloWorld, which isn’t required by Office, but included as an example for

developers. Figure 6 shows the contents of HelloWorld\.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Figure 6. The Contents of the HelloWorld\ Folder.

The format of the HelloWorld class in the JAR file is:

package org.libreoffice.example.java_scripts;

public class HelloWorld

{

 public static void printHW(XScriptContext xSc)

 { /* code not shown */ }

}

HelloWorld implements a single printHW() function.

My FindMacros.java example calls Macros.findScripts() with a substring, and all the

macro names containing that string are printed. For example, a search for "hello"

returns five matches:

Matching Macros in Office: (5)

vnd.sun.star.script:Utils.HelloWorld.hello?

 language=Java&location=user:uno_packages/FormMacros.oxt

vnd.sun.star.script:HelloWorld.helloworld.bsh?

 language=BeanShell&location=share

vnd.sun.star.script:HelloWorld.org.libreoffice.example.java_scripts.

 HelloWorld.printHW?language=Java&location=share

vnd.sun.star.script:HelloWorld.helloworld.js?

 language=JavaScript&location=share

vnd.sun.star.script:HelloWorld.py$HelloWorldPython?

 language=Python&location=share

Four of the hello-related scripts are share macros written in BeanShell, Java,

JavaScript, and Python.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

4. Calling the "hello" Macros

The TextMacros.java example creates a text document, and calls the four "hello"

share macros listed above by FindMacros.java. They each add a short piece of text to

the document, as displayed on lines 2-5 in Figure 7.

Figure 7. A Document with "hello" Macros Text.

TextMacros.java utilizes Macros.execute() to call the macros:

// in TextMacros.java

public static void main(String[] args)

{

 XComponentLoader loader = Lo.loadOffice();

 XTextDocument doc = Write.createDoc(loader);

 if (doc == null) {

 System.out.println("Writer doc creation failed");

 Lo.closeOffice();

 return;

 }

 if (Macros.getSecurity() == Macros.LOW)

 Macros.setSecurity(Macros.MEDIUM);

 XTextCursor cursor = Write.getCursor(doc);

 GUI.setVisible(doc, true);

 Lo.wait(1000); // make sure the document is visible

 // before sending it dispatches

 Write.appendPara(cursor, "Hello LibreOffice");

 Macros.execute("HelloWorld.helloworld.bsh",

 "BeanShell", "share");

 Write.endParagraph(cursor);

 Macros.execute("HelloWorld.py$HelloWorldPython",

 "Python", "share");

 Write.endParagraph(cursor);

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

 Macros.execute("HelloWorld.helloworld.js",

 "JavaScript", "share");

 Write.endParagraph(cursor);

 Macros.execute("HelloWorld.org.libreoffice.example.

 java_scripts.HelloWorld.printHW",

 "Java", "share");

 Write.endParagraph(cursor);

 Write.appendPara(cursor, "Timestamp: " + Lo.getTimeStamp());

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The arguments of Macros.execute() are the MACROPARAM, LANGPARAM, and

LOCPARAM parts of the macro's URI; they're separated out to make the macro's

name a little easier to read.

Macros.execute() uses the theMasterScriptProviderFactory service to obtain a

XScriptProviderFactory It creates a XScriptProvider which can load the named macro

as an XScript object; the script is executed by XScript.invoke():

// in the Macros class

public static Object execute(String macroName, String language,

 String location)

{ return execute(macroName, null, language, location); }

public static Object execute(String macroName, Object[] params,

 String language, String location)

{

 if (!isMacroLanguage(language)) {

 System.out.println("\"" + language +

 "\" is not a macro language name");

 return null;

 }

 try {

 /* deprecated approach

 XScriptProviderFactory spFactory = Lo.createInstanceMCF(

 XScriptProviderFactory.class,

 "com.sun.star.script.provider.MasterScriptProviderFactory");

 */

 XComponentContext xcc = Lo.getContext();

 XScriptProviderFactory spFactory =

 Lo.qi(XScriptProviderFactory.class,

 xcc.getValueByName(

 "/singletons/com.sun.star.script.provider.

 theMasterScriptProviderFactory"));

 XScriptProvider sp = spFactory.createScriptProvider("");

 XScript xScript = sp.getScript("vnd.sun.star.script:" +

 macroName + "?language=" + language +

 "&location=" + location);

 // minimal inout/out parameters

 short[][] outParamIndex = { { 0 } };

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

 Object[][] outParam = { { null } };

 return xScript.invoke(params, outParamIndex, outParam);

 }

 catch (Exception e) {

 System.out.println("Could not execute macro " +

 macroName + ": " + e);

 return null;

 }

} // end of execute()

Input parameters can be passed to invoke(), but the three-argument version of

Macros.execute() sets them to null. It's also possible to have the script set output

parameters, but my call to XScript.invoke() doesn't use them either.

There's no need to pass Macros.execute() a reference to the document. An executing

script only requires Office's current context which is retrieved by Lo.getContext().

4.1. Macro Security Levels

Prior to the macro calls in TextMacros.java, there's a call to Macros.getSecurity(). It

reports Office's macro execution setting, which is changed to Macros.MEDIUM if the

current value is Macros.LOW:

// part of TextMacros.java...

if (Macros.getSecurity() == Macros.LOW)

 Macros.setSecurity(Macros.MEDIUM);

The Macros class defines four security constants: LOW, MEDIUM, HIGH,

VERY_HIGH, which correspond to the levels used in Office's "Macro Security"

dialog shown in Figure 8. It is reached via Tools > Options > Security, and the

"Macro Security" button.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

Figure 8. The Macro Security Dialog.

The Office API has a MacroExecMode class (see lodoc MacroExecMode) which

defines many more security levels, but the four levels in the GUI seem sufficient.

Macros.getSecurity() uses Info.getConfig() to access the

"/org.openoffice.Office.Common/Security/Scripting" configuration node, and look up

its "MacroSecurityLevel" property:

// in the Macros class

public static int getSecurity()

{

 System.out.println("Macro security level:");

 Integer val = (Integer) Info.getConfig(

 "/org.openoffice.Office.Common/Security/Scripting",

 "MacroSecurityLevel");

 // various tests of val, before returning its int value

 // :

 return val.intValue();

}

Macros.setSecurity() manipulates the same configuration node but supplies a new

value for the "MacroSecurityLevel" property:

// in the Macros class

public static boolean setSecurity(int level)

{

 if ((level == Macros.LOW) || (level == Macros.MEDIUM) ||

 (level == Macros.HIGH) || (level == Macros.VERY_HIGH)) {

 System.out.println("Setting macro security level to " + level);

 return Info.setConfig(

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

 "/org.openoffice.Office.Common/Security/Scripting",

 "MacroSecurityLevel", Integer.valueOf(level));

 }

 else {

 System.out.println("Use Macros class constants:

 LOW, MEDIUM, HIGH, or VERY_HIGH");

 return false;

 }

} // end of setSecurity()

4.2. Implementing the HelloWorld Java Macro

The four macros called by TextMacros.java add text to the document, but how

exactly? The Java macro is called using:

// part of TextMacros.java...

Macros.execute("HelloWorld.org.libreoffice.example.

 java_scripts.HelloWorld.printHW",

 "Java", "share");

This invokes the printHW() static method in the HelloWorld class in the

org.libreoffice.example.java_scripts package shown back in Figure 4. The complete

code for the class (minus some comments) is:

// the HelloWorld class

package org.libreoffice.example.java_scripts;

import com.sun.star.script.provider.XScriptContext;

import com.sun.star.uno.*;

import com.sun.star.text.*;

public class HelloWorld

{

 public static void printHW(XScriptContext xSc)

 {

 XTextDocument xtextdocument =

 (XTextDocument) UnoRuntime.queryInterface(

 XTextDocument.class, xSc.getDocument());

 XText xText = xtextdocument.getText();

 XTextRange xTextRange = xText.getEnd();

 xTextRange.setString("Hello World (in Java)");

 } // end of printHW()

} // end of HelloWorld class

XScript.invoke() constructs a one-argument call to printHW(), passing it a

XScriptContext object. As we'll see later, a function can be called with different

arguments depending on what event triggers the macro.

The XScriptContext interface defines four methods which allow the current context,

the desktop, and document to be accessed (see lodoc XScriptContext). printHW()

utilizes XScriptContext.getDocument() to retrieve the document, and casts it to

XTextDocument. This allows the end of the text to be accessed with XTextRange, so

a string (""Hello World (in Java)") can be appended to it.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

5. The LibreLogo Macro

HelloWorld isn't the most exciting of macro examples. LibreLogo is a fun (and

educational) share macro for LibreOffice (see Figure 9), which has been a standard

Office add-on since version 4.0.

Figure 9. The LibreLogo Macro Module.

Normally LibreLogo is accessed through its own View > Toolbars > Logo toolbar,

which is just as well since the Macro selector doesn't list any macros in the LibreLogo

module (see the empty area on the right of Figure 9). I had to examine the module's

Python code in <OFFICE>\share\Scripts\python\LibreLogo\LibreLogo.py to work out

how to call it as a function.

My UseLogo.java example creates a text document, writes the logo program text onto

the page, followed by LibreLogo's rendering of that program, as in Figure 10.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

Figure 10. The Page Generated by UseLogo.java.

UseLogo.java is:

public class UseLogo

{

 public static void main(String[] args)

 {

 XComponentLoader loader = Lo.loadOffice();

 XTextDocument doc = Write.createDoc(loader);

 if (doc == null) {

 System.out.println("Writer doc creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 Lo.wait(1000); // make sure doc is visible

 XTextCursor cursor = Write.getCursor(doc);

 String logoCmds = "repeat 88 [fd 200 left 89] fill";

 Write.appendPara(cursor, logoCmds);

 Macros.executeLogoCmds(logoCmds);

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

 } // end of main()

} // end of UseLogo class

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

Macros.executeLogoCmds() is a small wrapper around Macros.execute() which calls

the commandline() function inside LibreLogo.py:

// in the Macros class

public static Object executeLogoCmds(String cmdsStr)

{

 Object[] params = new String[2];

 params[0] = ""; // based on looking at commandline()

 params[1] = cmdsStr; // in LibreLogo.py

 return execute("LibreLogo/LibreLogo.py$commandline",

 params, "Python", "share");

}

The params[] array is treated as two arguments by XScript.invoke() and passed to

commandline().

The quick-start and resources pages at librelogo.org are the places to start learning

LibreLogo (http://librelogo.org/quick-start/ and http://librelogo.org/resources/).

There's also a help page of commands at

https://help.libreoffice.org/Writer/LibreLogo_Toolbar.

A good source of examples, slides, and code is http://www.numbertext.org/logo/. The

best introductory talk at that site is "LibreLogo – Turtle vector graphics for

everybody" from 2012 (http://www.numbertext.org/logo/librelogo.pdf), and there are

more recent presentations which update the project. One of its aims was to create a

textbook for Hungarian primary and secondary schools (the project lead, László

Németh, is Hungarian), which is free to download from

http://szabadszoftver.kormany.hu/wp-

content/uploads/librelogo_oktatasi_segedanyag_v4.pdf.

6. Writing a Simple Event Macro

It's time to start coding our own macros. I'll start by writing a ShowEvent class which

reports when various events occur. It does this by implementing several versions of a

static show() method:

// in ShowEvent.java

public class ShowEvent

{

 public static void show(XScriptContext sc, ActionEvent e)

 // triggered by a action event (usually a button press)

 { display("action", getSource(e)); }

 public static void show(XScriptContext sc, TextEvent e)

 // called when text changes inside a text component

 { display("text", getSource(e)); }

 public static void show(XScriptContext sc, FocusEvent e)

 // called when the focus changes

 { display("focus"); }

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

 public static void show(XScriptContext sc, Short val)

 // called from a toolbar

 { display("toolbar (" + val + ")"); }

 public static void show(XScriptContext sc, KeyEvent e)

 // called because of a key

 { display("key " + e.KeyChar, getSource(e)); }

 public static void show(XScriptContext sc, MouseEvent e)

 // called because of the mouse

 { display("mouse"); }

 public static void show(XScriptContext sc,

 com.sun.star.document.DocumentEvent e)

 // triggered by a document event

 { display("document", e.EventName); }

 public static void show(XScriptContext sc, EventObject e)

 { if (e != null)

 display("object", getSource(e));

 else

 display("object ()");

 }

 public static void show(XScriptContext sc)

 // called from a menu or the "Run Macro..." menu

 { display("menu/run"); }

 // support methods; explained shortly

 // :

} // end of ShowEvent class

A particular show() function is called depending on the event, and more versions of

show() could easily be added since Office supports a wide range of events. Probably

the best summary of them is in the online documentation for EventObject (see lodoc

EventObject); EventObject is the superclass for most event types.

When I first wrote ShowEvent, I mistakenly assumed that the show() function with

the EventObject argument (i.e. the second to last one in the code above) would be the

default method called when no other version of show() was suitable. That isn't the

case; instead, the single argument show() (i.e. the last function,

show(XScriptContext sc)) is executed.

The show() methods utilize display() and showDialog():

// part of the ShowEvent class...

private static void display(String msg)

{

 showDialog(msg + " event");

 // JOptionPane.showMessageDialog(null, msg + " event");

}

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

private static void display(String msg, String info)

{

 showDialog(msg + " event: " + info);

 // JOptionPane.showMessageDialog(null, msg + " event: " + info);

}

private static void showDialog(String msg)

{

 JDialog dlg = new JDialog((java.awt.Frame)null, "Show Event");

 dlg.getContentPane().setLayout(new GridLayout(3,1));

 dlg.add(new JLabel(""));

 dlg.add(new JLabel(msg, SwingConstants.CENTER)); // centered text

 dlg.pack();

 Random r = new Random();

 dlg.setLocation(100 + r.nextInt(50), 100 + r.nextInt(50));

 dlg.setVisible(true);

 dlg.setResizable(false);

 dlg.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

} // end of showDialog()

A modeless dialog is displayed using Java's JDialog rather than

JOptionPane.showMessageDialog(), which means that the dialog won't cause Office

to suspend until the user closes the window.

Each dialog is placed at a slightly random position, so that multiple dialogs created by

several events will all hopefully be visible. Another issue is that the dialog's parent is

null which means that the dialog may not appear in front of the Office window.

No use is made of my utility classes, such as Macros.java or GUI.java. Although this

makes the code longer, it also makes this example self-contained, and easier to install.

I'll use my support classes in the extension and document examples in the next

chapter.

Events which are usually triggered by GUI components, such as ActionEvent and

TextEvent, are passed to getSource() which attempts to find the name of the

component that sent the event:

// part of the ShowEvent class...

private static String getSource(EventObject event)

{

 XControl control = UnoRuntime.queryInterface(

 XControl.class, event.Source);

 XPropertySet xProps = UnoRuntime.queryInterface(

 XPropertySet.class, control.getModel());

 try {

 return (String)xProps.getPropertyValue("Name");

 }

 catch (com.sun.star.uno.Exception e) {

 return "Exception?";

 }

 catch (com.sun.star.uno.RuntimeException e) {

 return "RuntimeException?";

 }

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

} // end of getSource()

6.1. Installing a Simple Event Macro

A Java macro is installed as a JAR file, so ShowEvent.class is packaged as

ShowEvent.jar after compilation:

compile ShowEvent.java

jar cvf ShowEvent.jar ShowEvent.class

The JAR is added to a new folder called ShowEvent\ beneath

<OFFICE>\share\Scripts\java\, thereby making it a share macro. It's also necessary to

include a parcel-descriptor.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<parcel language="Java" xmlns:parcel="scripting.dtd">

 <script language="Java">

 <locale lang="en">

 <displayname value="ShowEvent.show"/>

 <description>

 Shows a dialog with basic event information.

 </description>

 </locale>

 <functionname value="ShowEvent.show"/>

 <logicalname value="ShowEvent.show"/>

 <languagedepprops>

 <prop name="classpath" value="ShowEvent.jar"/>

 </languagedepprops>

 </script>

</parcel>

Of the three 'name' attributes in the XML file, only <functionname> seems to be used

by Office. The <description> text appears in the Macro selector dialog (e.g. see

Figure 12 below) when the macro is selected, and <languagedepprops> adds the JAR

to Office's classpath.

The final contents of the ShowEvent\ folder are a JAR and XML file, as shown in

Figure 11.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

Figure 11. The ShowEvent Share Macro Folder.

It's a good idea to check that this new macro can be seen by Office. Office should be

restarted and the "LibreOffice Macros" subsection of the Macro Selector dialog

examined. Figure 12 shows the ShowEvent.show macro in the ShowEvent module.

Figure 12. Checking for the Presence of ShowEvent.show.

6.2. Using ShowEvent.show in a Form

build.odt is a simple form using textfields and buttons shown in Figure 13.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

Figure 13. The "build.odt" Form.

The event handling properties of a control are accessed by changing to form design

mode (click the "OK hand" icon, second from the left in the toolbar at the bottom of

Figure 13). Subsequently, the mouse is right-clicked over a control, such as the

FIRSTNAME textfield selected in Figure 13. The resulting pop-up menu includes a

"Control" menu item which displays the control's Properties dialog (see Figure 14).

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 23 © Andrew Davison 2017

Figure 14. The Properties Dialog for the FIRSTNAME Textfield Control.

The Events tab (shown in Figure 14) lists all the events associated with the control,

and a macro is attached by pressing on the right-hand "…" button for an event. An

"Assign Action" dialog appears, like the one in Figure 15.

Figure 15. The "Assign Action" Dialog.

Figure 15 shows that the user has selected the "Key pressed" event.

Clicking on the "Macro…" button brings forth the Macro Selector dialog, and a macro

can be chosen. Upon returning to the "Assign Action" dialog, the event will list the

macro in the "Assigned Action" column. Clicking "Ok" again returns to the properties

dialog which now shows the macro name next to the "Key pressed" event, as in

Figure 16.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 24 © Andrew Davison 2017

Figure 16. The Properties Dialog with an Assigned Macro.

The macro's arguments ("share" and "Java") are its category and implementation

language.

The event/macro link can be tested by returning to the default mode in the form by

clicking the "Ok hand" icon again. When the user types three letters into the

FIRSTNAME textfield (e.g. "and"), three dialogs appear, as in Figure 17.

Figure 17. Reporting Key Events.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 25 © Andrew Davison 2017

I've rearranged the three dialogs in Figure 17 so they're all visible. They're generated

by the KeyEvent version of ShowEvent.show:

// part of the ShowEvent class...

public static void show(XScriptContext sc, KeyEvent e)

// Called from a key

{ display("key " + e.KeyChar, getSource(e)); }

As each letter ("a', 'n', and 'd') is typed, this version of show() is called.

7. Automating the Assigning of Event Macros

The preceding section illustrates that the assignment of macros to events is

straightforward, but time-consuming, especially if you have many controls in your

form. Fortunately, macros can be assigned programmatically.

I first used the "build.odt" form of Figure 13 back in Chapter 40 on forms; it wasn't

created by hand but generated by BuildForm.java. That program is extended in this

section with calls to Forms.assignScript() which assigns a macro to an event in a

control.

I'll employ Forms.assignScript() so that the FIRSTNAME textfield calls

ShowEvent.show whenever its text changes, focus is lost, or a key is pressed. Also,

the six buttons at the bottom of the form (see Figure 13) will execute

ShowEvent.show when they're pressed.

The new code is highlighted in bold in createForm():

// part of BuildForm.java...

private void createForm(XTextDocument doc)

{

 XPropertySet props =

 Forms.addLabelledControl(doc, "FIRSTNAME", "TextField", 11);

 textEvents(props); // only the FIRSTNAME textfield has a listener

 Forms.addLabelledControl(doc, "LASTNAME", "TextField", 19);

 props = Forms.addLabelledControl(doc, "AGE", "NumericField", 43);

 Props.setProperty(props, "DecimalAccuracy", (short) 0);

 Forms.addLabelledControl(doc, "BIRTHDATE", "FormattedField", 51);

 // buttons, all with listeners

 props = Forms.addButton(doc, "first", "<<", 2, 63, 8);

 buttonEvent(props);

 props = Forms.addButton(doc, "prev", "<", 12, 63, 8);

 buttonEvent(props);

 props = Forms.addButton(doc, "next", ">", 22, 63, 8);

 buttonEvent(props);

 props = Forms.addButton(doc, "last", ">>", 32, 63, 8);

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 26 © Andrew Davison 2017

 buttonEvent(props);

 props = Forms.addButton(doc, "new", ">*", 42, 63, 8);

 buttonEvent(props);

 props = Forms.addButton(doc, "reload", "reload", 58, 63, 13);

 buttonEvent(props);

} // end of createForm()

The property set for the FIRSTNAME textfield is passed to textEvents(), which calls

Forms.assignScript() three times:

// part of BuildForm.java...

public void textEvents(XPropertySet props)

{

 // listen for text change

 Forms.assignScript(props, "XTextListener", "textChanged",

 "ShowEvent.ShowEvent.show", "share");

 // listen for focus loss

 Forms.assignScript(props, "XFocusListener", "focusLost",

 "ShowEvent.ShowEvent.show", "share");

 // listen for a key press

 Forms.assignScript(props, "XKeyListener", "keyPressed",

 "ShowEvent.ShowEvent.show", "share");

} // end of textEvents()

The buttonEvent() method is a (long) one-liner:

// part of BuildForm.java...

public void buttonEvent(XPropertySet props)

{

 Forms.assignScript(props, "XActionListener", "actionPerformed",

 "ShowEvent.ShowEvent.show", "share");

}

It's surprisingly tricky to decide which class and method names should be passed to

Forms.assignScript() since the only information about control events are the labels in

the Properties dialog (e.g. "Key pressed" in Figure 16). It can be hard to map these

labels onto suitable class and method names, especially since Office supports so many

event types. The best source for suitable listener classes is the online documentation

for XEventListener (see lodoc XEventListener); XEventListener is the superclass

of most listeners.

After the generated form has been saved, it should be opened in Office so its controls'

properties can be inspected. For example, the FIRSTNAME textfield's event

properties are now as in Figure 18.

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 27 © Andrew Davison 2017

Figure 18. The Properties Dialog for the FIRSTNAME textfield.

Figure 18 confirms that the class/method names used in textEvents() are correct.

Forms.assignScript() utilizes the XEventAttacherManager interface which offers

multiple methods for attaching and removing scripts from events. The code for

Forms.assignScript():

// in the Forms class

public static void assignScript(XPropertySet controlProps,

 String interfaceName, String methodName,

 String scriptName, String loc)

{

 try {

 XChild propsChild = Lo.qi(XChild.class, controlProps);

 XIndexContainer parentForm =

 Lo.qi(XIndexContainer.class, propsChild.getParent());

 int pos = -1;

 for (int i = 0; i < parentForm.getCount(); i++) {

 XPropertySet child = Lo.qi(XPropertySet.class,

 parentForm.getByIndex(i));

 if (UnoRuntime.areSame(child, controlProps)) {

 pos = i;

 break;

 }

 }

 if (pos == -1)

 System.out.println("Could not find contol's pos in form");

 else {

 XEventAttacherManager manager =

 Lo.qi(XEventAttacherManager.class, parentForm);

 manager.registerScriptEvent(pos,

 new ScriptEventDescriptor(interfaceName, methodName,

 "", "Script",

 "vnd.sun.star.script:"+scriptName +

 "?language=Java&location=" + loc));

Java LibreOffice Programming. Chapter 48. Event Macros Draft #2 (20th March 2017)

 28 © Andrew Davison 2017

 }

 }

 catch(com.sun.star.uno.Exception e)

 { System.out.println(e); }

} // end of assignScript()

The first half of assignScript() calculates the control's index position inside the

parent's form. An index is used by most XEventAttacherManager methods to refer to

a control.

The last part of assignScript() uses XEventAttacherManager.registerScriptEvent() to

attach the script to the control's event. A ScriptEventDescriptor object is constructed

from five arguments: the listener's class name, the method to be called in the listener,

any extra data for the method (which is "" here), the script type (which can be "Script"

or "Basic"), and the macro's full name.

If you're unsure about the full name, then use my ListMacros.java or FindMacros.java

to display macro details. For example:

run FindMacros ShowEvent

produces:

Matching Macros in Office: (1)

 vnd.sun.star.script:ShowEvent.ShowEvent.show?

 language=Java&location=share

"ShowEvent.ShowEvent.show" and "share" are passed to Forms.assignScript() as its

last two arguments:

// part of BuildForm.java...

Forms.assignScript(props, "XTextListener", "textChanged",

 "ShowEvent.ShowEvent.show", "share");

